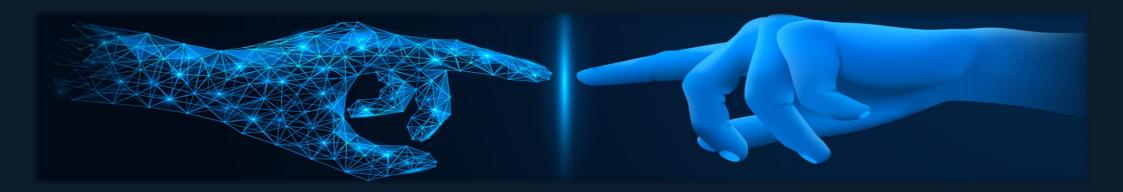


APEX® Suite - Digital H-Ex Twin

APEX® Suite - Digital H-Ex Twin is a package of proprietary programs which allow the user to access a digital replica of heat exchanger (e.g. an Air Preheater – APH) designed and supplied by *APEX Heat Transfer®*.

APEX® Suite - Digital H-Ex Twin is dedicated to Plant Operators, Assets Managers, Process Engineers and all those professionals who run, maintain, or design process units utilizing our proprietary heat exchangers, and who will benefit from being able to simulate the digital replica of their heat exchanger under diverse operating conditions.

APEX® Suite - Digital H-Ex Twin comprises of the following programs:

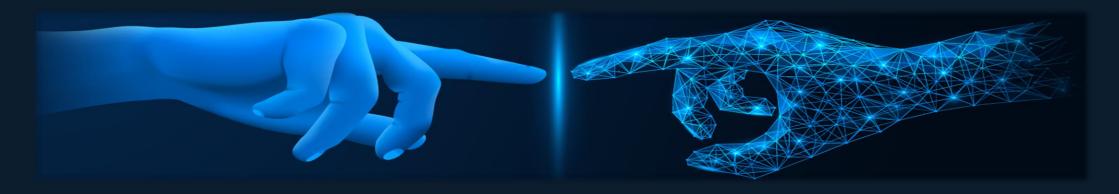

- **APEX[®] Termic** proprietary heat exchanger design program
- APEX[®] Combust process stream design program
- APEX[®] DewPoint dew point calculator
- APEX[®] FurnaceEfficiency furnace efficiency calculator

APEX[®] Suite - Digital H-Ex Twin programs are available to the user under our Premium Software Platform, which can be accessed online with use of popular web browsers.

For comprehensive design or assessment of complete process unit, **APEX® Suite - Digital H-Ex Twin** can be easily integrated with such simulation programs as:

- AspenTech
- AspenPlus
- AspenTechHYSYS
- ChemStations ChemCAD
- AVEVA/SimSciPro/II
- BR&E ProMax

- PetroSim
- ProSimPlus
- ProSim
- Honeywell UnisimDesign
- AmsterCHEM COCO Simulator
- Daniel WagnerDWSim



Benefits of Using Digital H-Ex Twin

- Simulate overall performance of the heat exchanger (e.g. metal temperature, pressure drop, flue gas and combustion air outlet temperature) when changing fuel or firing duty, and check how it affects the process unit.
- Plan ahead efficiency of process unit and fuel savings, NOx and CO2 emissions dependent on the APH performance simulated in foreseen operating cases.
- Calculate, verify and plan combustion air stream bypass or recirculation to prevent:
 - cold-end corrosion;
 - excess NOx emissions; and
 - decrease in process unit efficiency or integrity.
- Calculate expected condensation and corrosion rates when operating below the acid dew point, facilitating proactive measures to uphold system integrity and performance.
- Design or redesign the process unit based on performance of the heat exchanger across a diverse range of operating cases.

- Verify influence of the heat exchanger's performance on process unit; radiant and convection duty, flux rates and coil temperatures; NOx emissions; fuel efficiency; CO2 emissions; catalyst operating temperature and efficiency.
- Verify influence of the pressure drop across the heat exchanger on the process unit under varying operational conditions.
- Ensure that temperature of the heat exchanger remains within its metallurgical limits and avoids falling below the acid dew point across range of operating cases.
- Calculate acid dew point for variable fuels and flue gases.
- Check the temperature distribution of streams at the outlet of the heat exchanger to ensure the proper functioning of downstream equipment.
- Avoid costly downtime required for unplanned maintenance or repairs by ensuring proper operation of the heat exchanger within its design parameters.
- Perform troubleshooting, verify the performance of the heat exchanger by comparing simulation results with measurements in field.

Digital replica in simulations

User defined inputs:

- Firing fuel and flue gas stream by combustion of defined fuel.
- Chemical composition of process streams.
- Inlet pressure of process streams.
- Inlet temperature of process streams (constant value or as a function of time).
- Inlet flow rate of process streams (constant value or as a function of time).
- Fouling factors.
- Heat loss.
- Stream flow rate and temperature in by-pass or recirculation.

Simulation results:

- Temperature of streams at the outlet of the heat exchanger (minimum, maximum, average and, in case of stream by-pass or recirculation, mixed value).
- Graphs of temperature distribution of streams at the outlet of the heat exchanger.
- Pressure drop across the heat exchanger.
- Metal temperature across the heat exchanger (minimum and maximum value).
- Duty (heat transferred) and thermal effectiveness of the heat exchanger.
- Warning of insufficient flow turbulence inside the heat exchanger for effective heat transfer.
- Acid dew point at the inlet and the outlet of the heat exchanger.
- Graph of the acid dew point distribution at the outlet of the heat exchanger.
- Water dew point.
- Condensation calculations (e.g. condensation rate, concentration of acid, condensate volume, corrosion rate).

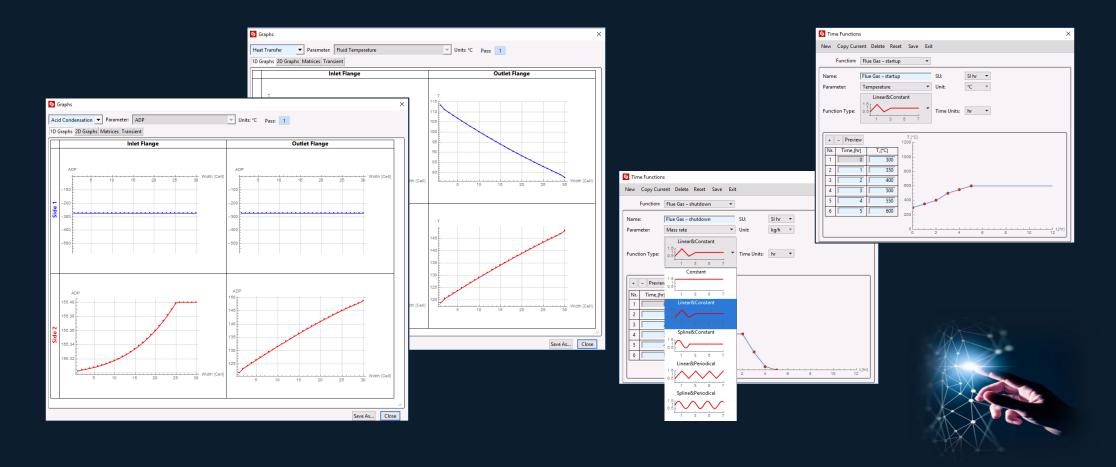
APEX® Termic

This program allows to simulate the performance of CORPEX[®], V-FLEX[®], CORTEX[®] and C-PEX[®] heat exchangers across a wide range of operating conditions. The user can input various parameters, including inlet temperatures, flow rates, pressure, fouling factors, chemical composition of streams, heat loss, and considerations for stream's by-pass or recirculation.

This comprehensive input capability allows for a detailed analysis of heat exchanger behavior under diverse operating scenarios.

The user is enabled to assess how changes in the process may impact the heat exchanger's performance in terms of:

- Stream outlet temperature,
- Pressure drop,
- Metal temperature,
- Dew point,
- Thermal effectiveness,
- Heat transferred, and more.



APEX® Termic Ver. 2												
Exit Open Save	Project Data	Help										
DESIGN	▼ Ac	dd Case Delete Ca	se Run	Stop AutoCalc 1	P 2D	Geometry Optio	Process Options Time Functions	Printout Graphs				
1. Flow Type 2. H.T. Area 3. Width (C-dir) 4. Height (H-dir)	x m2 mm 1 mm 1	Pass 1 x 1 600.0 1 1 320.0 1	Pass 2 Pa Z-Cc 720.0 1 7 570.0 3 8	20.0 1 720 20.0 1 570 250. 10250	- 9894.2 .0 .0 8280.				C-Dir H-Dir	ep 🗹 te 🗌	001 Max. Rel. Error Time step Nr. of steps 00. Total Nr. Cells Pass4 16 16 256	0.00009880 s 15 360 1376
Performance Data			S.U. : Metric	•					Fluids Data	Combust	Heat Balance	● vol% ○ wt%
	Units	Pass 1	Pass 2	Pass 3	Pass 4	Total			Parameters	Units	AIR - DESIGN	FG
1. Fluid			AIR -DESIGN 🔄 A		-DESIGN 👱				Flow Rate	kg/h	186100.000	194600.000
Flow Rate THR.		186 100.	186 100.	186 100.	186 100.	_			Pressure	mm W.C. g	0.000	0.000
3. Bypass	%	0.	0.	0.	0.				Enth.Corr.	-	1.000	1.000
4. Re No. 5. Temp. IN	°C	-10.	-	-	-				02 N2	vol%	20.785 77.200	4.062 71.156
6. Temp. OUT	°C	- 10.	-	_	339.2				H2O	vol%	1.025	16.583
7. Temp. MIX	°C	0.0	0.0	0.0	339.2				CO2	vol%	0.030	7.316
8. Pin	mm W.C. g		-	-	-				SO2	ppm vol	0.000	2.612
9. Pout	mm W.C. g	-	-	-	180.0				Ar	vol%	0.960	0.883
10. ΔPstatic + R.D.	mm W.C.	-	-	-	-	95.3			со	vol%	0.000	0.000
11. Fouling	kcal/(m2.h.C)	4299.300000-	4299.300000- 4	299.300000- 429	9.300000-	\checkmark			NO2 NH3	vol% vol%	0.000	0.000
12. H.T. Coeff.	kcal/(m2.h.C)			-	-				Mmol	kg/kmol	28.859	27,793
13. Fluid		FG 🔻			Ψ.	\checkmark			WDP	°C	7,862	56,370
14. Flow Rate THR.	-	194 600.	194 600.	194 600.	194 600.				ADPclean	°C	-273.150	106.892
15. Bypass	%	0.	0.	0.	0.				ADPdirty	°C	-273.150	112.611
16. Re No.		-	-		-				Tamb	°C	25.000	25.000
17. Temp. IN	°C	90.2	-	-1	392.2				Patm RH	mm W.C. abs %	10332.275	10332.275
18. Temp. Out	°C mm W.C. g	90.2	-	-	-60.2				Elevation	70 m	0.000	0.000
19 Pin 20. Pout	mm W.C. g	-245.5		_	-00.2						0.000	0.000
20. Poul 21. ΔPstatic + R.D.	-	-243.5	_	-	_	185.3			Acid Condensa	ation		
22. Fouling	kcal/(m2.h.C)	2149.7	2149.7	2149.7	2149.7				Parameters		Units	Pass1 / Side2
23. H.T. Coeff.	kcal/(m2.h.C)) –	-	-	-				ADP In.		°C	106.5
24. Heat Loss	%	0.5	0.5	0.5	0.5				ADP Out.	Av.Mass Fract.	°C wt%	92.
25. Heat Transf'd	kcal/h	-	-	-	- 1	5 952 313.1			Max. Corr. R		mm/year	0.0372
26.U – H.T. Coeff.	kcal/(m2.h.C)) –	-	-	-	23.4				Prod. Rate C.S.	mm/year	0.2848
27.F-factor		-	-	-	-	0.9302			Condensate	Mass Rate @Tou	ut kg/h	0.0834
28. LMTD 29. Min. Metal Temp	°C	- 55.6	- 96.5	- 156.0	- 335.9	74.1				Volume Rate @		1.3809
30, Max. Metal Temp		105.9	203.3	340.8	369.3					Max.Film Thickne		0.0005
31. Thermal Effect.	-	-	-	-		86.8342				Av.Mass Fract. Mass Rate Out.	wt% kg/h	64.29 0.0868
Errors & Warnings									Liviist Cond. I	wass kate Out.	kg/h	0.0000
ID Remarks												
862 Fluid Temperature	e ≤ WDP for Side	e 1 Pass 1										
363 Fluid Temperature ≤ ADP for Side2 Pass1												

APEX® Termic

The program provides graphical display of the streams' temperature distribution and the Acid Dew Point distribution at the outlet of the heat exchanger. The user can assess how the conditions at the outlet of the heat exchanger may affect their downstream equipment. APEX[®] Termic allows the user to perform time-dependent simulations, such us furnace startup or shutdown, which may be essential in troubleshooting the process unit operation, or to assess how such operating cases impact performance or integrity of the heat exchanger.

APEX® Combust

This program utilizes chemical composition, pressure, and flow rate to define the process streams used as heat transfer mediums in the heat exchanger (e.g. APH). It allows also to define and combust the fuel to derive the flue gas stream. The user can assess how changes of the fuel or flue gas composition may affect the operation and integrity of the heat exchanger.

🗿 APEX® Combust Ver. 2023.2 - June 2023 — 🗆 🗙 🧐 Create New Stream										×						
Exit	Open Save Help	Name														
_	as Fuels Liquid Fuels Solid Fuels Streams vol% 🔻 kg/h 🔻 Sl hr				•			Stream Nar	Name: Typical Gas from Oil Firing							
	Show All Create New	Typical Gas fr		l Firing 38500.0000 28.9089 0.0000 101325.0000 51.3408 155.5959 164.4982			Stream Type Library Stream Name Composition Flow Rate	Input Units		Si br						
		Flow Rate M _{mol} Pgage	=		kg/h Pa g Pa abs °C °C °C			System of U		SITT						
	Typical Gas from Oil Firing		=						position Unit:							
	Show current	Patm	=					Input Flow Atmospheric Con		kg/h 🔻						
	Modify current Copy current	WDP ADPclean ADPdirty	= = =					Temperatu		25 °C						
								Relative Hu		60. %						
	Resize current Mix current with	Enth. Corr.	=	1.0000				Elevation:		0. m						
	Delete current Change Name	02 N2	=	3.0000 70.8980	vol% vol%											
	Heat Balance	H20 C02	=	13.0000	vol% vol%											
				1020.0000	ppm vol vol%		Previous Next		Ok Cancel							
	emarks luid Temperature ≤ ADP for Side2 Pass1	CO NO2 NH3	= 0.00	0.0000	vol% vol% vol%			rienous rien	on concer							
805 7	uua Temperature S ADP for Staez Pass I		=	= 0.0000						Modify Current (×				
		CH4		0.0000	S Combu	st Current		×			Enter the Gas Fue	l Composition:	Total: 100.00000 kmol			
						on Stream Name:	Enter the stream	name			H2:	0.	kmol	C5H12:	0.	kmol
					Burner Properties		,				CO:	0.	kmol	C6H6(B):	0.	kmol
					Fuel Temperature:		25.	°C			CO2:	0.4	kmol	C7H8(T):	0.	kmol
			Comb		Combustic	Combustion Air Temperature: 15.		°C		Gas Fuel Type	CH4:	94.	kmol	C8H10(X):	0.	kmol
					Flame Temperature:		1000.	1000. °C		Gas Fuel Name	C2H2:	0.	kmol	H2S:	0.	kmol
				Stream Properties					Composition Flow Rate	C2H4:	0.	kmol	N2:	2.	kmol	
				Excess Air Ratio:		10 %				C2H6: C3H6:	0.	kmol kmol	02: Ar:	0.	kmol kmol	
				Stream Pre	essure Gauge:	0.	Pag			C3H8:	0.4	kmol	SO2:	0.	kmol	
				Atmospheric conditions						C4H8:	0.4	kmol	H2O:	0.	kmol	
				Elevation:		0.	m			C4H10:	0.2	kmol	NH3:	0.	kmol	
					Temperatu		25	°C			C5H10:	0.	kmol		,	
				Relative Hu	umidity:	60.	%									
							OI	Cancel		F	Previous Next	Ok Cancel				

APEX® Suite - Digital H-Ex Twin

APEX[®] FurnaceEfficiency

The user can utilize the Air Preheater's performance data to calculate the overall efficiency of the furnace, fuel savings and CO_2 emissions.

APEX® DewPoint

APEX® DewPoint Ver. 2023.1

Dew Point Calculator

Save PDF Help

10.0004 ppmv

3,933 %

142.725 °C

56.894 °C

0.0002 ppmv

200

50

77.645 wt. %

nnmy

Dew Point Curve

p H₂O + p H₂SO₄ = 0.17001 ata

- Verhoff and Banchero - WDP ----- ADF

02

H₂O

SO2

Gas Pressure

Open Save

H₂SO₄

ADP

WDP

x min

x max

Conversion

Plot range

H₂SO₄ HCI HF 502 -> 502 Conversion

Verhoff and Banchero

Conc. of condensate

Comporature (*C)

The user can calculate the dew point temperature of Sulfuric, Hydrochloric, and Hydrofluoric acid, as well as water. It allows to assess whether the dew point can lead to corrosion issues in the cold-end of heat exchanger.

Fuel Type

Gas Fuel

Temperature, [*C]

250

O Liquid Fuel

conversion to SO-

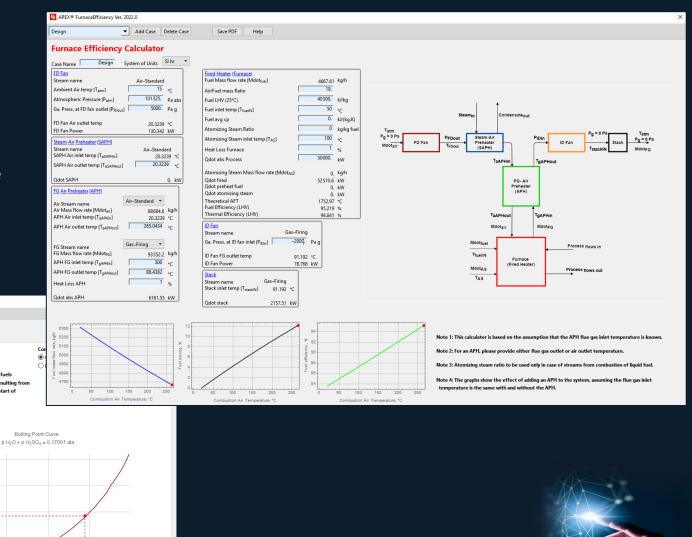
Note 1: Not valid for solid fuels

fuel combustion, prior to start of

Note 2: SO₂ is the value resulting from

1.7 vol %

17 vol %

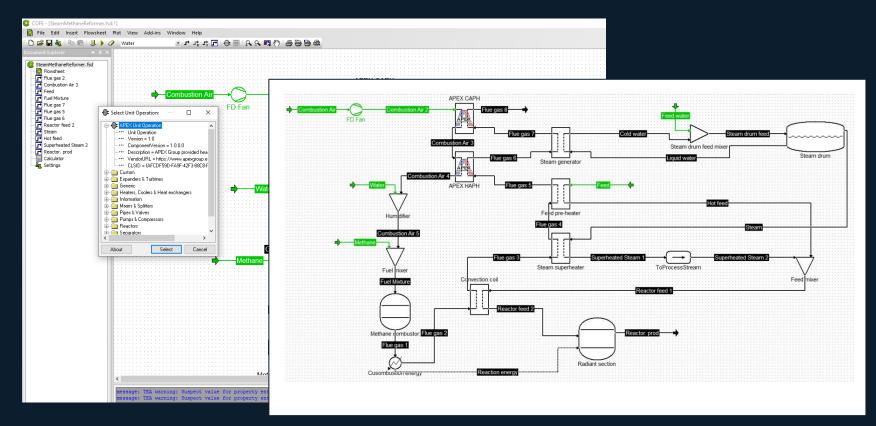

254.27212 ppmv

101325 Pa abs

Boiling Point Curve

- Bubble Point Line ----- ADP

wt. fr. H₂SO₄. [%]



Integration with 3rd party process simulation software

APEX[®] Suite – Digital H-Ex Twin can easily be integrated with process simulation software such as HYSYS, UniSimDesign, PetroSim and many others.

This integration allows the user to run simulations of the complete process unit under variable operating conditions. Such simulations enable the process industries to optimize their operations in terms of, for example, energy consumption and emissions, system integrity and maintenance planning, production yields and margins. This capability allows a comprehensive assets management, assessment of the process unit design and output, and planning a strategized optimization of its operational performance to meet rigorous environmental or economical goals.

www.apexheattransfer.com

Copyright © 2025, Apex-Digital B.V. All rights reserved. Reproduction without permission is expressly forbidden. APEX[®] and APEX Heat Transfer logo are the registered trademarks of APEX Group Companies. All rights reserved.